Welcome!
Lecture 1 / CSE 801
& Workshop closing lecture.



Challenge #1.:

Most biologists don’t know much about
computational science.

* Among many biologists, there is a general fear
or skepticism of computers.

* This leads to shallow thinking about
computational science.



Challenge #2:

Most computational scientists don’t know much
about biology.

e Extant computational solutions may not use
appropriate heuristics, or default parameters.

* “It works on my data...”, but their data != yours!

* Solutions/programs may not be couched in the right
terms for the biology, or with proper appreciation for
biological complexity.



Challenge #3:

Both biology and computational science are deep,
complex fields of study, inhabited by extremely smart
people!

* None of this is easy, on any side of things.

* |f it were easy, they wouldn’t need people as smart as
all of us to do it, right??

* A two-day workshop, or one-term course, can’t
possibly show you everything.



Challenge #4:

Data gathering technology is changing very
fast.

e We don’t understand its limitations or biases
very well (e.g. sequencing tech)

* The software and compute infrastructure lags
behind volume of data, type of data.



None of this is the #1 problem you will
face with computational biology.

Here is the #1 problem:

How do you know if your computational answer
is right or wrong?



None of this is the #1 problem you will
face with computational biology.

Here is the #1 problem:

How do you know if your computational answer
is right or wrong?

If you can’t answer this question, then what’s the
point of doing the computation?



Controls

Just as with experiments, you can put negative
and positive controls in your computing.

e.g. with BLAST,

— Do you see expected matches with the parameters
and database you’re using?

e.g. with models
— do you have an alternate route to specific answers?

Positive controls are often easier than negative,
in “discovery-driven” science...



Internal controls

* Molecules and sequences for which you have
expectations.

* “I know this gene comes up, based on gPCR. |
expect to see it in my mRNAseq.”



External controls

Does the whole process work?

“I can reproduce what this other person/lab
did, with their data, when | use my own
software.”

This is much more rarely done...



Black box nature of algorithms

 When you listen to a computational biologist
explain their clever algorithm...

e ...it's a mistake to think that they necessarily
know what’s going on.

e Software is full of bugs and unintended
conseguences.



Pipelines

 Each step can be
understood, and tested/
controlled individually.

* Each step is re-usable!
Just need to figure out
input/output formats.

* Automate, automate,
automate.
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The opportunity:

* The sequence is here.

* “In the land of the blind, the one eyed is king.”
-- those prepared to think about how to use
sequencing technology to answer their
guestion will have a substantial leg up.

* Who knows? Some of you might even like this
mix!



Framing the approach

1. How does all this stuff work, generally?

2. Can we automate things and/or do them
more efficiently?



How does this stuff work?

e Typically, you need to run
multiple different programs in
sequence.

* Each program takes in data, in
files; and outputs data, in files.

* (Some programs also produce
pretty pictures via the Web.)
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Why automation & computational
efficiency matter

* You’'ll learn to run lots of different programs here.

 WEe'll run into some practical problems:
— Some programs take a long time to run.

— Some programs take many different parameters; which
are best?

— Some programs don’t finish on “cheap” hardware.

How do we run many long-running programs? How do
we remember what we did? How do we get our
programs to finish?



“Heuristics”

 What do computers do when the answer is
either really, really hard to compute exactly,
or actually impossible?

* They approximate! Or guess!

* The term “heuristic” refers to a guess, or
shortcut procedure, that usually returns a
pretty good answer.



Often explicit or implicit tradeoffs between
compute “amount” and quality of result

A (17)

http://www.infernodevelopment.com/how-
computer-chess-engines-think-minimax-tree



This kind of issue (heuristics; time to
compute => quality) comes up a lot.

Mapping.

Assembly.

Statistics (Monte Carlo and resampling methods).
Simulations.

More generally, most “interesting” algorithms
involve approximations and shortcuts. When are
they (in)appropriate for your task?



What are the limits of data +
compute?

Example: RNAseq for gene expression

Table 1. Read mapping errors for single (SE) and paired end (PE) reads from random
(simulated) and real transcriptomes

Organism Num Trans | Error || TP (d) | FP (d) || TP (u) | FP (u) || TP (m) | FP (m)
Random (SE) 5000 1% 92% 0% 92% 0% 92% 0%
Mouse (SE) 5000 1% 87% 5% 81% 0% 92% 12%
Random (PE) 5000 1% 85% 0% 85% 0% 85% 0%
Mouse (PE) 5000 1% 81% 4% 77% 0% 85% 9%

Mapping parameters are default (d), unique (u), and multimap (m). True positives are reads that were
successfully mapped to their originating transcript. False positives are reads that were mapped to other
transcripts (even if the read was an exact match to the alternate transcript).

Mappers will ignore some fraction of reads due to errors.

Pyrkosz et al., unpub.



Does choice of mapper matter?

Some details matter; some details don’t.

Table 3. Comparison of Three Common Mapping Programs on the Same Chicken Data
Sets

Organism | Num Trans | Bowtie TP (d) | FP (d) || BWA TP (d) | FP (d) || SOAP2 TP (d) | FP (d)
Chicken 100% 78% 22% 8% 20% 78% 22%
Chicken 90% 72% 21% 72% 20% 72% 21%
Chicken 80% 65% 22% 65% 21% 65% 22%
Chicken 70% 58% 22% 58% 21% 58% 22%
Chicken 60% 51% 20% 50% 19% 51% 20%
Chicken 50% 44% 19% 44% 18% 44% 19%
Chicken 40% 36% 16% 37% 16% 36% 17%
Chicken 30% 27% 13% 27% 13% 27% 12%
Chicken 20% 19% 11% 19% 11% 19% 11%
Chicken 10% 9% 5% 9% 6% 9% 5%

Comparison of Bowtie, BWA, and SOAP2 mapping programs on the same simulated reads for error-free
chicken read sets (triplicate and averaged) with decreasing completeness of the reference transcriptome,
showing equivalent results.

Reference completeness matters more!

Pyrkosz et al., unpub.



Real problem? Our data can’t uniquely
specify solution!

Here, there is no direct way to know if last exon is connected to first exon.

250 bp

Transcript 1
Transcript 2
Read 1

Read 2

! |I}

Read 3

Figure 6. Hypothetical example of 1 kb multimap reads. Only Read 3 can be uniquely
mapped due to the unique exon in Transcript 1.
Pyrkosz et al., unpub.



Aka “Science”

* How strong a conclusion could we reach from
this method?

* Does our analysis actually support our
conclusions?

 What other analyses can we do, or what other
data can we bring in, to better develop/
understand/test our results?

Note! Nowhere specific to “computation”...



NGS & de novo Assembly



Assembly vs mapping

* No reference needed, for assembly!
— De novo genomes, transcriptomes...

* But:
— Scales poorly; need a much bigger computer.
— Biology gets in the way (repeats!)
— Need higher coverage

e But but:

— Often your reference isn’t that great, so assembly may
actually be the best way to go.



Assembly

It was the best of times, it was the wor
, it was the worst of times, it was the
isdom, it was the age of foolishness
mes, it was the age of wisdom, it was th

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness

...but for lots and lots of fragments!



“But don’t we have all the genomes we need?”
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Assemble based on word overlaps:

the quick brown fox jumped
jumped over the lazy dog
the quick brown fox jumped over the lazy dog

Repeats do cause problems:

my chemical romance: na na na
na na na, batman!



Shotgun sequencing & assembly

Randomly fragment & sequence from DNA;
reassemble computationally.

contig 1 contig 2
consensus [
- -
> o % &
a - - R
fragments -—

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTI
AAAACTCOCCTGCITATCAACCGATCCCCCGCTACCTICTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu)



Assembly — no subdivision!

Assembly is inherently an all by all process.
There is no good way to subdivide the reads
without potentially missing a key connection




Short-read assembly

* Short-read assembly is problematic

* Relies on very deep coverage, ruthless read
trimming, paired ends.

contig 1 contig 2
consensus [
- -t
=4 P % %
n - -~ _—
fragments -

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCITATCAACCGATCCCCCGCTACCTICTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu)



Short read lengths are hard.
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Figure 3. Percentage of the E.coli genome covered by contigs greater than a
threshold length as a function of read length.

Whiteford et al., Nuc. Acid Res, 2005



Short read lengths are hard.
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a read length of 200, the
E. coli genome cannot be
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Short read lengths are hard.
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Conclusion: even with

a read length of 200, the
E. coli genome cannot be
assembled completely.

Why? REPEATS.

This is why paired-end
sequencing is so important
for assembly.

Whiteford et al., Nuc. Acid Res, 2005



Four main challenges for de novo
sequencing.
Repeats.

Low coverage.
Errors

These introduce breaks in the
construction of contigs.

Variation in coverage — transcriptomes and metagenomes, as well
as amplified genomic.

This challenges the assembler to distinguish between erroneous
connections (e.g. repeats) and real connections.



Repeats

* Overlaps don’t place sequences uniquely
when there are repeats present.

contig 1 contig 2
consensus [
- -
L L - -
~ - B —_—
fragments -

Y
|

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCITATCAACCGATCCCCCGCTACCTTICTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu)



Coverage

Easy calculation:
(# reads x avg read length) / genome size
So, for haploid human genome:

30m reads x 100 bp = 3 bn



Coverage

“1x” doesn’t mean every DNA sequence is
read once.

It means that, if sampling were systematic, it
would be.

Sampling isn’t systematic, it’s random!



Actual coverage varies widely from the
average, for low avg coverage

10x coverage of 1mb - distribution
140000

120000 [

100000 [

80000

60000 -

40000

number of bases sequenced that many times

20000

0 1 | 1 I ~ 1
0 5 10 15 20 25 30
number of times each base sequenced



Two basic assembly approaches

* Overlap/layout/consensus
* De Bruijn k-mer graphs

The former is used for long reads, esp all Sanger-
based assemblies. The latter is used because
of memory efficiency.



Overlap/layout/consensus

Essentially,

1. Calculate all overlaps

2. Cluster based on overlap.

3. Do a multiple sequence alignment

contig 1 contig 2
consensus [
- -
- o . &
-~ - -
frag ts -
-

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCITATCAACCGATCCCCCGCTACCTICTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu)



K-mers

Break reads (of any length) down into multiple
overlapping words of fixed length k.

ATGGACCAGATGACAC (k=12) =>

ATGGACCAGATG
TGGACCAGATGA
GGACCAGATGAC
GACCAGATGACA
ACCAGATGACAC




Shotgun sequencing & k-mers

———————————————————— Genome (unknown)
X X X
X
X
X X
X X Reads
X (randomly chosen;
X have errors
v X % X )
X X

“Coverage” is simply the average number of reads that overlap
each true base in genome.

Here, the coverage is ~10 — just draw a line straight down from the top
through all of the reads.



Reducing to k-mers <> overlaps

———————————————————— Genome (unknown)
X
X
X X
X X Reads
X (randomly chosen;
X have errors)
X X X X
X X
True k-mers

(shorter than reads;
"tile" the true genome;
high abundance)

Note that k-mer abundance is not properly represented here! Each
blue k-mer will be present around 10 times.



Errors create new k-mers

X X X
X
X
X X
X X Reads
X (randomly chosen;
X have errors)

X X X X

X X
— Erroneous k-mers S o S

—% (up to k for each error; %

t low abundance) t

Each single base error generates ~k new k-mers.
Generally, erroneous k-mers show up only once — errors are random.



K-mers — what size k to use?

Table TA. Mean number of false placements of K-mers on the
genome

Escherichia Saccharomyces Arabidopsis Homo

K coli cerevisiae thaliana sapiens
200 0.063 0.26 0.053 0.18
160 0.068 0.31 0.064 0.49
120 0.074 0.39 0.086 1.7

80 0.082 0.49 0.15 7.2

60 0.088 0.58 0.27 18

50 0.091 0.63 0.39 32

40 0.095 0.69 0.65 78

30 0.11 0.77 1.5 330

20 0.15 1.0 5.7 2100

10 18 63.8 880 40,000

Butler et al., Genome Res, 2009



Big genomes are problematic

Coverage by

Genome Reference Component Edge Ambiguities Coverage perfect edges
Species Ploidy size (kb) NS0 (kb) N50 (kb) NSO (kb) per megabase (%) 210 kb (%)
C. jejuni 1 1800 1800 1800 1800 0.0 100.0 100.0
E. coli 1 4600 4600 4600 4600 0.0 100.0 100.0
B. thailandensis 1 6700 3800 1800 890 2.7 99.8 99.5
E. gossypii 1 8700 1500 1500 890 2.6 100.0 99.9
S. cerevisiae 1 12,000 920 810 290 28.7 98.7 94.9
S. pombe 1 13,000 4500 1400 500 19.1 98.8 97.5
P. stipitis 1 15,000 1800 900 700 8.6 97.9 96.3
C. neoformans 1 19,000 1400 810 770 4.5 96.4 93.4
Y. lipolytica 1 21,000 3600 2200 290 6.2 99.1 98.6
Neurospora crassa 1 39,000 660 640 90 17.4 97.0 92.5
H. sapiens region 2 10,000 10,000 490 2 68.2 97.3 0.2

Butler et al., Genome Res, 2009



# of bases or k-mers with that coverage

Choice of k affects apparent coverage

1000

800

600

400

200

Two reasons: read length; errors and variants.
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per-base coverage
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K-mer graphs - overlaps

aaccgg
(a) ccggtt

(b) ‘ aacc "_" accg '_" ccgg —’ cggt —o ggtt |

(c) 4accggtc

J.R. Miller et al. / Genomics (2010)



K-mer graph (k=14)

l ATCCAGTAGGACCACTTGACAGGCGA l

Each node represents a 14-mer;
Links between each node are 13-mer overlaps



K-mer graph (k=14)

| ATCCAGTAGGACCACTTGACAGGCGA l
| ATCCAGTAGGACCACTTGACGCGGAT |

@@
@)-(c)-e)-(e)-(a)-(T)

Branches in the graph represent partially overlapping sequences.




K-mer graph (k=14)

l ATCCAGTAGGACCACTTGACAGGCGA |
| ATCCAGTAGGACCACTTGACGGGCGA |

( ATCCAGTAGGACCA ]—»@»@»@‘@»
| 000,00

Single nucleotide variations cause long branches



K-mer graph (k=14)

| ATCCAGTAGGACCACTTGACAGGCGATTGACG I
| ATCCAGTAGGACCAGTTGACAGGCGATTGACG |

0000
oo loe oo abahak

Single nucleotide variations cause long branches;
They don’t rejoin quickly.



Choice of k affects apparent coverage
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K-mer graphs - branching

CCGGAG
aaccgg
() ccggtt
(b) aacc — accg —* ccgg M cggt —* ggtt

\ Which path?
CGGA —»| GGAG

(C) aLccggtt

For decisions about which paths etc, biology-based
heuristics come into play as well.



K-mer graph complexity - spur

(a) -<:__

(Short) dead-end in graph.

Can be caused by error at the end of some
overlapping reads, or low coverage

J.R. Miller et al. / Genomics (2010)



K-mer graph complexity - bubble

(b) 4 >
Multiple parallel paths that diverge and join.

Caused by sequencing error and true
polymorphism / polyploidy in sample.

J.R. Miller et al. / Genomics (2010)



K-mer graph complexity — “frayed
rope”

o9 e

Converging, then diverging paths.

Caused by repetitive sequences.

J.R. Miller et al. / Genomics (2010)



Resolving graph complexity

Primarily heuristic (approximate) approaches.

Detecting complex graph structures can generally
not be done efficiently.

Much of the divergence in functionality of new
assemblers comes from this.

Three examples:



Read threading

(before) (after)

S '.-"-..';. ‘:.:::_, S ’%
:..'.4._ g _ __A_:i'::. b b r—
> =

Single read spans k-mer graph => extract the
single-read path.

J.R. Miller et al. / Genomics (2010)



Mate threading

A *

Resolve “frayed-rope” pattern caused by
repeats, by separating paths based on mate-
pair reads.

J.R. Miller et al. / Genomics (2010)



Path following

M ..M~
Pr———

ﬁ& — —
e -
-

—_— —_—

Reject inconsistent paths based on mate-pair
reads and insert size.

J.R. Miller et al. / Genomics (2010)



More assembly issues

Many parameters to optimize!

RNAseq has variation in copy number; naive
assemblers can treat this as repetitive and eliminate it.

Some assemblers require gobs of memory (4 lanes,
60m reads =>~ 150gb RAM)

How do we evaluate assemblies?
— What's the best assembler?



K-mer based assemblers scale poorly

Why do big data sets require big machines??

Memory usage ~ “real” variation + number of errors
Number of errors ~ size of data set

GCGTCAGGTAGCAGACCACCGCCATGGCGACGATG
GCGTCAGGTAGGAGACCACCGTCATGGCGACGATG
GCGTTAGGTAGGAGACCACCGCCATGGCGACGATG

GCGTCAGGTAGGAGACCGCCGCCATGGCGACGATG



De Bruijn graphs scale poorly with erroneous data
#Edges

N

Total edges

Error edges

True edges

#Reads

Conway T C, Bromage A J Bioinformatics 2011;27:479-486

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, B f m t
please email: journals.permissions@oup.com I O I n O r a I CS



Co-assembly is important for sensitivity

Shared low-level
transcripts may
not reach the
threshold for

assembly.

4,004

Intestine

Combined
+3,230



Is your assembly good?

For genomes, N50 is an OK measure:

— “50% or more of the genome is in contigs > this
number”

That assumes your contigs are correct...!

What about mRNA and metagenomes??

Truly reference-free assembly is hard to
evaluate.



How do you compare assemblies?

overlap



What’'s the best assembler?
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Bradnam et al., Assemblathon 2:
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What’'s the best assembler?
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Bradnam et al., Assemblathon 2:
http://arxiv.org/pdf/1301.5406v1.pdf

Fish assembly
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Snake assembly



Note: the teams mostly used multiple
software packages

BCM-HGSC

BCM

2 1 1 4+ 1+ P

Baylor College of Medicine Human
Genome Sequencing Center

SegPrep, KmerFreq,
Quake, BWA,
Newbler, ALLPATHS-
LG, Atlas-Link, Atlas-
GapfFill, Phrap,
CrossMatch, Velvet,
BLAST, and BLASR




Answer: it depends

e Different assemblers perform differently,
depending on
— Repeat content
— Heterozygosity

* Generally the results are very good (est
completeness, etc.) but different between
different assemblers (!)

e Therels No One Answer.



CEGMA
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Estimated completeness
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Assembly

Each assembler lost different ~5% CEGs



NG50 scaffold length (bp)

Tradeoffs in N 50 and % incl.
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Practical issues

Do you have enough memory?

Trim vs use quality scores?

When is your assembly as good as it gets?
Paired-end vs longer reads?

More data is not necessarily better, if it
introduces more errors.



Practical issues

 Many bacterial genomes can be completely
assembled with a combination of PacBio and

Illumina.
(see: http://arxiv.org/abs/1304.3752)

* As soon as repeats, heterozygosity, and GC
variation enter the picture, all bets are off

(eukaryotes are trouble!)



Mapping & assembly

* Assembly and mapping (and variations
thereof) are the two basic approaches used to
deal with next-gen sequencing data.

* |I'll be showing both in the next ~5 weeks.



Protocols

https://khmer-protocols.readthedocs.org/

Effort to make things transparent &
reproducible.



The Kalamazoo Metagenome Assembly Pipeline

Adapter trim &
quality filter

Partition
graph

Diginorm to C=10
Too big to
assemble?

Split into "groups"

Trim high-
coverage reads at
low-abundance

Map reads to
assembly
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N
J

Annotate contigs
with abundances

k-mers

Reinflate groups

(optional Assemble!!!

Diginorm to C=5

Small enough to assemble?
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N
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MG-RAST, etc.

|



Diginorm

Adapter trim &
quality filter

Diginorm to C=10

Trim high-
coverage reads at
low-abundance
k-mers

Diginorm to C=5

Too big to

Partition
graph

assemble?

Split into "groups"

Map reads to
assembly
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Annotate contigs
with abundances
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Diginorm

Adapter trim &
quality filter

Diginorm to C=10

Trim high-
coverage reads at
low-abundance
k-mers

Diginorm to C=5

Partitioning

Too big to

Partition
graph

asseimble?

Split into "groups"

N
J

Map reads to
assembly

4

N
J

Annotate contigs
with abundances

4

L

Reinflate groups
(optional

Small enough to assemble?

Assemble!!l

1

N
J

MG-RAST, etc.

|



Deep Carbon data set
* Name: DCO_TCO_MM5

 Masimong Gold Mine; microbial cells filtered from
fracture water from within a 1.9km borehole. (32,000
year old water?!)

e M.C.Y. Lau, C. Magnabosco, S. Grim, G. Lacrampe
Couloume, K. Wilkie, B. Sherwood Lollar, D.N. Simkus,
G.F. Slater, S. Hendrickson, M. Pullin, T.L. Kieft, O.
Kuloyo, B. Linage, G. Borgonie, E. van Heerden, J.
Ackerman, C. van Jaarsveld, and T.C. Onstott



20m reads / 2.1 Gbp DCO_TCO_M M 5

Adapter trim &
quality filter

“Could you take a look at this?
MG-RAST is telling us we have a
lot of artificially duplicated reads,
i.e. the data is bad.”

Diginorm to C=10

Trim high- Entire process took ~4 hours of

coverage reads at

low-abundance computation, or so.

k-mers

(Minimum genome size est: 60.1 Mbp)
5.6m reads / 601.3 Mbp



21
23
25
27
29
31
33
35
37
39
41
43
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Assembly stats:

All contigs

N contigs
343263
302613
276261
258073
242552
228043
214559
203292
189948
180754
172209
165563

(Minimum genome size est: 60.1 Mbp)

Sum BP
63217837
63025311
62874727
62500739
62001315
61445912
60744478
60039871
58899828
58146806
57126650
56440648

N contigs
6271
7183
7375
7424
7349
7307
7241
7129
7088
7027
6914
6925

Contigs > 1kb

Sum BP
10537601
13867885
15303646
16078145
16426147
16864293
17133827
17249351
17527450
17610071
17551789
17654067

Max
contig
9987
21348
34272
48742
48746
48750
48768
45446
59437
54112
65207
73231
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Chose two:

A: k=43 (“long contigs”)
165563 contigs

56.4 Mbp

longest contig: 73231 bp

B: k=43 (“high recall”)
343263 contigs

63.2 Mbp

longest contig is 9987 bp

How to evaluate??



How many reads map back?

Mapped 3.8m paired-end reads (one subsample):
* high-recall: 41% of pairs map
* longer-contigs: 70% of pairs map

+ 150k single-end reads:
* high-recall: 49% of sequences map
* longer-contigs: 79% of sequences map
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Conclusion

* This is a pretty good metagenome assembly — >
80% of reads map!

* Surprised that the larger dataset (6.32 Mbp,
“high recall”) accounts for a smaller percentage
of the reads — 49% vs 79% for the 56.4 Mbp “long
contigs” data set.

* Are different parameters recovering different
portions of the data set?



CSE 801

* First 5 weeks: NGS assembly, mapping, etc.

* Second 5 weeks: Modeling & simulations;
agent-based stuff.

* All 10 weeks: intro programming in Python.



